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ABSTRACT 

Author: O’Day, Garrett. MS 
Institution: Purdue University 
Degree Received: August 2019 
Title: Improving Problem Solving With Retrieval-Based Learning 
Committee Chair: Jeffrey D. Karpicke 
 

Recent research asserts that the mnemonic benefits gained from retrieval-based learning 

vanish for complex materials. Subsequently, it is recommended that students study 

worked examples when learning about complex, problem-centered tasks. The 

experiments that have evaluated the effectiveness of studying worked examples tend to 

overlook the mental processing that students engage in when completing retrieval-based 

learning activities. In contrast, theories of transfer-appropriate processing emphasize the 

importance of compatibility between the cognitive processing required by the test and the 

cognitive processing that is activated during learning. For learners to achieve optimal test 

performance, according to transfer-appropriate processing, they need to study in such a 

way that they are engaging in the same mental processing that will be required of them 

when tested. This idea was used to generate testable predictions that compete against the 

claim that the retrieval practice effect disappears for complex materials, and these 

competing predictions were evaluated in three experiments that required students to learn 

about the Poisson probability distribution.  

In Experiment 1, students learned the general procedure for how to solve these 

problems by either repeatedly recalling the procedural steps or by simply studying them. 

The retrieval practice condition produced better memory for the procedure on an 

immediate test compared to the study only condition. In Experiment 2, students engaged 

in the same learning activities as Experiment 1, but the test focused on their problem-

solving ability. Students who practiced retrieval of the procedural steps experienced no 

benefit on the problem-solving test compared to the study only condition. In Experiment 

3, students learned to solve Poisson probability problems by studying four worked 

examples, by studying one worked example and solving three practice problems, or by 

studying one worked example and solving three practice problems with feedback. 
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Students were tested on their problem-solving ability one week later. The problem-

solving learning activities outperformed the worked example condition on the final 

problem-solving test. Taken together, the results demonstrate a pronounced retrieval 

practice effect but only when the retrieval-based learning activities necessitated the same 

mental processing that was required during the final assessment, providing support for 

the transfer-appropriate processing account. 
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INTRODUCTION 

Learning is often conceptualized as encoding or the acquisition of knowledge and 

can occur when students are reading textbooks, taking notes, or studying examples. 

Sometime after students have finished learning the material, they are given a test to 

measure what they have learned. Testing, in this view, is seen as nothing more than a 

diagnostic tool that students do not enjoy completing and teachers do not enjoy 

administering. Fortunately, research has consistently demonstrated that enhanced learning 

arises from taking tests and retrieving information, which vastly outweighs the drawbacks 

of testing. (for a recent review see Karpicke, 2017). 

This counterintuitive finding, which students often fail to use to their advantage, 

is now commonly referred to as retrieval-based learning and has been found to improve 

test performance for students in elementary school (Marsh et al., 2012), middle school 

(McDaniel et al., 2013), high school (McDermott et al., 2014), college (Knouse et al., 

2016), and medical school (Larsen et al., 2013). The retrieval practice effect has also 

been demonstrated across a wide range of materials and has been found to promote the 

learning of word pairs (Karpicke & Smith, 2012), key-term definitions (Lipko-Speeda et 

al., 2014), and educational texts (Blunt & Karpicke, 2014). Some studies have even 

examined retrieval-based learning with non-verbal materials such as Chinese characters 

with English speaking participants (Kang, 2010) and navigational routes (Kelly et al., 

2015). Even though research continues to demonstrate the breadth of the retrieval 

practice effect, there is limited research investigating the efficacy of retrieval-based 

learning for problem-centered activities that are critical in STEM (Science, Technology, 

Engineering, and Mathematics) domains. 
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Learning by Studying Worked Examples 

Alternative research has found that substituting traditional problem-solving tasks 

with the studying of worked examples, which consist of a problem statement along with a 

detailed explanation of how to solve the problem, improves future problem-solving 

performance (for reviews see Renkl, 2014; Renkl & Atkinson, 2010; van Gog & 

Rummel, 2010). This benefit of studying worked examples over solving practice 

problems is referred to as the worked example effect (Sweller, 2006; Sweller & Cooper, 

1985). The primary theoretical explanation for the worked example effect comes from 

cognitive load theory, which assumes that humans have a limited working memory 

capacity that is vital for successful problem solving (Paas & van Gog, 2006). When 

solving practice problems, novice learners squander their limited cognitive resources 

because they lack the necessary understanding of problem-solving strategies (van Gog et 

al., 2011). They are, instead, forced to rely on shallow and ineffective strategies leading 

to a high mental burden referred to as cognitive load (Sweller, 1988). When learners are 

placed under cognitive load, they lack the cognitive resources that are critical for 

acquiring the necessary problem-solving strategies (Hanham et al., 2017).  

Worked examples, on the other hand, reduce this cognitive burden by providing 

learners with appropriate problem-solving strategies. By studying an expert solution, 

students do not need to waste their cognitive resources by searching for and applying a 

potentially erroneous strategy in an attempt to solve the problem. Instead, they can devote 

all of their attention and cognitive capacity to learning the worked examples and are 

better equipped to acquire the cognitive schema needed to successfully solve future 

problems (Sweller et al., 1998; van Gog & Rummel, 2010). 
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Van Gog, Kester, and Paas (2011) tested the benefit of worked examples for 

complex materials that required learners to troubleshoot electrical circuits by diagnosing 

the faulty component. Students either studied four worked examples, solved four 

problems, alternated between two example-problem pairs, or alternated between two 

problem-example pairs. Van Gog, Kester, and Paas (2011) found that the worked 

example only condition and the example-problem pairs condition not only decreased self-

reported mental effort (i.e., cognitive load) but also improved performance on two novel 

circuit problems compared to the other conditions. These results were interpreted as 

evidence that studying worked examples is an effective learning activity compared to 

solving practice problems, at least on an immediate test. 

Research That has Compared Worked Examples and Retrieval Practice 

Additional research on the worked example effect by van Gog and Kester (2012) 

noted the similarity between the example-problem pairs condition (Example-Problem-

Example-Problem [EPEP]) in the experiment described previously and the traditional 

retrieval practice condition that requires students to alternate between studying and 

retrieving the material (Study-Test-Study-Test [STST]). The researchers argued that the 

example-problem condition is akin to a retrieval practice condition because students 

alternate between studying and solving problems, which requires learners to actively 

retrieve past information. However, a major difference between these two procedures is 

that traditional retrieval practice experiments provide students with an opportunity to 

review the exact information they were trying to remember after each retrieval 

opportunity (e.g., Blunt & Karpicke, 2014). Experiments that have used example-

problem pairs, on the other hand, presented a novel example after each practice problem. 
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Studying a completely new example requires students to spend a portion of their limited 

time reading and understanding the demands for that specific question. Feedback for the 

exact practice problem would instead allow students to find their immediately preceding 

mistakes quicker as they would already be familiar with the problem, granting them more 

time to specifically hone their problem-solving knowledge.  

Despite this major difference between the two procedures, van Gog, Kester, and 

Paas (2011) predicted that the example-problem pairs condition would lead to better 

performance because solving practice problems affords retrieval opportunities that are not 

present in the example-only condition. However, this prediction was not supported by 

their results. The example-problem pairs condition produced equivalent test performance 

compared to the example only condition, which is not surprising because researchers 

have known for quite some time that repeated studying tends to be favored on immediate 

tests but is ultimately unsuccessful at cultivating long-term learning. In fact, one study 

(Roediger & Karpicke, 2006) asked learners to tally the number of times they read 

through a short passage during a retrieval practice experiment. The repeated study 

condition, on average, read through the text fourteen times, whereas the repeated recall 

condition only read the text three times. The benefit of repeated studying over retrieval 

practice on immediate tests results from the large discrepancy in the amount of exposure 

to the material between the two conditions. Critically, the amount of exposure to the 

material is not predictive of long-term learning, where the type of processing that 

students engage in during learning is far more important. 

Long-term retention is arguably more important for students in classes where 

knowledge is often needed days, weeks, months, or even years later. Therefore, learning 
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activities must be compared on delayed assessments to better simulate authentic learning 

environments. Van Gog and Kester (2012) pitted the two learning activities against one 

another and examined problem-solving performance after a one-week delay. In their 

experiment, students learned how to troubleshoot electrical circuits by either studying 

four worked examples (i.e., EEEE) or by alternating between studying worked examples 

and problem solving (i.e., EPEP). Students who studied four worked examples performed 

numerically higher on the initial test and significantly better on the delayed test compared 

to students who had alternated between studying examples and solving practice problems. 

Unfortunately, the researchers included a confound in their experiment as they assessed 

performance at two time points for all participants – immediately after the learning phase 

and one week later. Having the retention interval for the final test as a within-subjects 

factor makes it difficult to interpret delayed test performance because it is impossible to 

know whether any difference on the final test is due to the learning activity students 

engaged in or is due to differences in retrieval success on the first test. It is important to 

note that retrieval-based learning is helpful as long as students are able to successfully 

retrieve correct information (Karpicke et al., 2014) and studying four worked examples 

appears to have led to greater initial retrieval success during the learning phase, which 

provides an alternative explanation for the supposed benefit of the worked example 

condition on the final test. 

In order to compare retrieval practice and worked examples without this 

confound, van Gog and colleagues (2015) repeated the experiment from van Gog and 

Kester (2012) but manipulated the retention interval as a between-subjects factor; 

students were either tested on their problem-solving ability 5 minutes after the learning 



15 

phase or they completed the test one week later. Across four experiments, they found that 

alternating between studying worked examples and attempting to troubleshoot electrical 

circuit problems (i.e., the retrieval practice condition) produced equivalent long-term 

performance to the worked example condition. The researchers combined the results from 

these four experiments into a small-scale meta-analysis and concluded that retrieval-

based learning was ineffective for highly complex, problem-oriented tasks based on a 

small, positive, but non-significant (d = 0.19) benefit that was in favor of solving practice 

problems over studying worked examples. 

The lack of a retrieval practice effect for these problem-focused materials was 

taken as evidence that material complexity is a boundary for retrieval-based learning (van 

Gog & Sweller, 2015). In this literature, material complexity is defined in terms of 

element interactivity, meaning that materials are composed of individual elements that 

may exist in isolation or may interact with many other elements (Leahy et al., 2015; 

Sweller, 2010; Sweller et al., 1998). Less complex materials are said to be low in terms of 

element interactivity, meaning that each individual piece of information can be learned 

independently from other information that is present in the to-be-learned materials. An 

example of low element interactivity materials are word-pairs that are common in 

memory research as each pair does not require simultaneous processing of the other pairs 

in order to be learned. In contrast, complex materials are said to be high in terms of 

element interactivity, meaning that the materials are composed of a set of highly related 

ideas that must be processed simultaneously in working memory (van Gog et al., 2015). 

Problem-solving tasks that are commonly used in the worked example literature are often 

touted as the epitome of highly interactive materials because they contain multiple, 
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related steps that build upon one another and must therefore be processed simultaneously 

in working memory (Chen et al., 2016; Leahy et al., 2015, Sweller, 2010; van Gog et al., 

2015; van Gog & Sweller, 2015). These tasks impose a high cognitive burden on novice 

learners that inhibits learning, but this burden is alleviated when students study worked 

examples resulting in the worked example benefit. 

Put simply, worked examples should lead to better problem-solving performance 

than retrieval practice for complex tasks that are high in element interactivity (Leahy et 

al., 2015; van Gog et al., 2015; van Gog & Sweller, 2015). Yet, the small-scale meta-

analysis conducted by van Gog and colleagues (2015) did not find the worked example 

effect. Leahy, Hanham, and Sweller (2015) also failed to find a benefit of studying 

worked examples over solving practice problems on a delayed test that required learners 

to use a bus timetable to determine the appropriate route between two locations. In their 

study, children learned to read a bus schedule by either studying eight worked examples 

or by alternating between studying a worked example and solving a problem four times. 

In their Experiments 1 and 2, students who only studied worked examples performed 

better on an immediate test than students who completed example-problem pairs. 

However, the worked example effect disappeared when the final test occurred one week 

after learning. Hanham, Leahy, and Sweller (2017) also found a small, positive, but non-

significant benefit of the problem-solving condition over the worked example condition 

when learning was assessed on a delayed test that required students to construct a puzzle 

poem based on a series of rules. The results from all of these experiments point toward 

the conclusion that retrieval-based learning activities are as effective, if not more 
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effective, than studying worked examples for promoting long-term learning of problem-

focused tasks. 

A final comparison of the retrieval practice and worked example effects comes 

from Yeo and Fazio (2019). In their three experiments, students learned how to solve 

Poisson probability problems by studying one worked example and solving three practice 

problems or by studying four worked examples. Yeo and Fazio (2019) found a 

performance benefit from studying worked examples over solving practice problems on 

immediate tests. There were no statistical differences between conditions on delayed tests 

for Experiments 1 and 3, meaning the worked example effect disappeared on delayed 

assessments. Experiment 2 differed from the other experiments in that students studied 

three identical worked examples or practiced three identical problems. The identical 

problems shared the same question prompt (i.e., calculate the number of arriving and 

departing planes) but differed only in numerical values within the problem. Additionally, 

one condition was provided feedback in the form of the worked example after each 

practice problem. These changes increased initial problem-solving success relative to 

their other experiments, and both of the problem-solving conditions outperformed the 

worked example condition on the delayed test. When considering their results along with 

the previous literature on this topic, Yeo and Fazio (2019) noted that the worked example 

effect tends to be found when problem-solving performance was low and disappeared 

when performance during learning was above 50%. This pattern of results provides 

further evidence of the critical role that initial retrieval success plays in retrieval-based 

learning. 
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Small-Scale, Exploratory Meta-Analysis 

A small-scale, exploratory meta-analysis was conducted to better understand the 

relationship between initial retrieval success and the effectiveness of retrieval practice 

relative to studying worked examples. Consequently, only studies that reported 

information about performance during the learning phase were included. A noteworthy 

observation about the worked example literature is that many studies do not report initial 

problem-solving performance, which appears to moderate the worked example effect 

(e.g., Chen et al., 2016; Darabi et al., 2007; Hanham et al., 2017; Leahy et al., 2015; van 

den Berge et al., 2013; van Gog et al., 2011). All future research should report 

performance during the learning phase for each practice problem. Additionally, only 

studies that assessed learning at a delay were included in the analysis because longer 

retention intervals better simulate authentic educational environments in which 

knowledge is often needed days, weeks, months, or even years later. Unfortunately, most 

of the research investigating the worked example effect has assessed learning on 

immediate tests, vastly limiting the number of included studies (Rawson, 2015; van Gog 

& Kester, 2012). 

Table 1 presents the results from the small-scale, exploratory meta-analysis and 

has been intentionally sorted by initial performance to easily illustrate the strong, positive 

relationship between performance during the learning phase and the benefit of practicing 

retrieval over studying worked examples (r = 0.85, p = .001). Caution should be used 

when interpreting these results, and future research should complete a more exhaustive 

analysis of the worked example literature. This random effects meta-analysis model 

yielded an overall effect size of d = 0.26 [0.07, 0.46] that was in favor of the retrieval  
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Table 1 

Effect Sizes (g): Retrieval Practice vs. Worked Example 

________________________________________________________________________ 

 Initial Performance Effect Size [95% CI] Publication Experiment 
________________________________________________________________________ 

 28.30 -0.29 [-0.92, 0.33]  Yeo & Fazio (2019) E1iso 

 50.42 0.04 [-0.58, 0.66] Van Gog et al. (2015) E1iso 

 53.87 0.04 [-0.45, 0.53] Van Gog et al. (2015) E3id 

 64.89 -0.07 [-0.79, 0.64] Van Gog et al. (2015) E2iso 

 64.89 0.45 [-0.25, 1.15] Van Gog et al. (2015) E2id 

 69.12 0.34 [-0.19, 0.86] Van Gog et al. (2015) E4iso 

 73.30 0.28 [-0.34, 0.90]  Yeo & Fazio (2019) E3a
iso 

 75.00 0.19 [-0.43, 0.82]  Yeo & Fazio (2019) E3iso 

 77.00 0.28 [-0.22, 0.79] Van Gog et al. (2015) E3iso 

 85.00 0.88 [0.23, 1.52]  Yeo & Fazio (2019) E2id 

 88.30 0.87 [0.22, 1.52]  Yeo & Fazio (2019) E2b
id 

________________________________________________________________________ 

Avg. initial performance Overall effect size 

 66.37% g = 0.26 [0.07, 0.46]   
________________________________________________________________________ 

Note. Subscripts (iso = isomorphic and id = identical) indicate the question type students 

were tested on in van Gog et al. (2015) or the type of practice problems in the learning 

phase in Yeo & Fazio (2019). 

 
aThe context reinstatement condition of the experiment compared to worked examples. 

bThe feedback condition of the experiment compared to worked examples. 
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practice effect (see also Cumming, 2012; Smith & Karpicke, 2014; Smith, Roediger, & 

Karpicke, 2013; van Gog et al., 2015; Zamary & Rawson, 2018 for other examples of this 

type of analysis). Students who solved practice problems achieved higher scores on a 

delayed test compared to students who only studied worked examples. To further explore 

the relationship between initial performance and the benefit of retrieval practice, the 

studies were separated into two groups based on a median split of initial performance. 

There was a pronounced retrieval practice effect, d = 0.47 [0.19, 0.75], when examining 

the five studies that had initial performance above 69.12% (N = 222, M = 79.72%). 

However, there was no benefit for retrieval practice, d = 0.09 [-0.15, 0.33], when looking 

at the six studies that had the lowest initial performance (N = 263, M = 55.25%). 

Unexpectedly, there was not a benefit for learning by studying worked examples even 

when students struggled to solve practice problems. This analysis suggests that the 

worked example effect occurs only when worked examples are compared to conditions 

where students repeatedly fail to solve practice problems, and the failure to find the 

retrieval practice effect in previous experiments could be due to low performance during 

the learning phase in addition to poorly powered experiments. 

Cognitive load theorists could argue that students who are performing well during 

learning are experts, and experts do not benefit from studying worked examples — a 

phenomenon referred to as the expertise reversal effect (Kalyuga, 2009; Kalyuga et al., 

2003; Kalyuga et al., 2001). However, studies on expertise reversal often involve 

longitudinal designs spanning multiple sessions over several weeks with intensive 

training sessions (see Kalyuga, 2007, for the suggested experimental sequence). None of 

the experiments included in the small-scale, exploratory meta-analysis followed this 
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design. Moreover, the average learning phase performance from the small-scale, 

exploratory analysis was 66.37%, which is hardly indicative of expertise. Nonetheless, 

proponents of cognitive load theory could argue that improving performance during the 

learning phase could afford expertise and therefore cognitive load theory would be 

correct in predicting an expertise reversal effect. If this path is taken, then the worked 

example effect is practically unimportant for educational purposes because it can be 

easily overturned when initial problem-solving success is supported. 

Transfer Appropriate Processing: An Alternative Explanation 

Theories of transfer-appropriate processing provide an alternative account for the 

relationship between initial problem-solving success and the effectiveness of retrieval-

based learning. According to the idea of transfer-appropriate processing, optimal test 

performance depends on the compatibility between the cognitive processing that occurs 

during learning and the cognitive processing that will be required by the test. If learners 

are failing to solve practice problems during learning, then they are not engaging in the 

critical processing that the test will require. In this situation, worked examples provide a 

learning benefit because students are able to achieve a basic understanding of the 

necessary problem-solving procedure. The converse situation would occur when learners 

achieve sufficient problem-solving success during learning because they would be 

engaging in the processing that will be critical during the test, providing them with a 

unique advantage over the worked example condition. 

Transfer-appropriate processing can also account for the absence of a retrieval 

practice effect when the retrieval-based learning activity required students to recall a 

previously studied worked example (van Gog et al., 2015; Yeo & Fazio, 2019). In these 



22 

experiments, students were asked to recall everything they could remember about a 

previously studied worked example. Presumably, they retrieved key information that 

would help them solve future problems, such as the procedural steps or the needed 

mathematical operations. However, these instructions also led students to retrieve 

question-specific information from the question prompt, such as the context of interest 

(e.g., the number of arriving and departing planes). Recalling that the worked example 

involved calculating the number of arriving and departing planes improves students’ 

memory for that information but does not lead them to engage in the cognitive processing 

that will benefit them on a problem-solving test. Consequently, a retrieval practice effect 

for complex materials could be more likely if retrieval focused solely on the information 

that will be critical during the problem-solving test, but it is unclear whether retrieval 

practice of the procedural steps will facilitate students’ ability to solve problems. 

Introduction to the Experiments 

Previous research has boldly claimed that retrieval-based learning benefits 

decrease or even disappear as the complexity of the learning material increases (van Gog 

& Sweller, 2015). This claim is entirely premature because the supporting evidence is 

flawed. First, the studies that are put forth as evidence tend to find a small, positive 

benefit that is actually in favor of problem-solving over studying worked examples (van 

Gog et al., 2015). Second, experiments that have compared studying worked examples to 

practicing retrieval have been notably underpowered (Karpicke & Aue, 2015; Rawson, 

2015). Third, the retrieval practice conditions often have abysmal initial learning 

performance without the provision of feedback (e.g., van Gog & Kester, 2012). Failing to 

solve problems is intuitively a poor learning strategy; a student would not be expected to 
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improve his or her piano playing ability by listening to a melody once and failing to 

reproduce it repeatedly. Yet, this is exactly the comparison worked example studies make 

when attempting to evaluate the retrieval practice effect. 

In order to address these major limitations in the current research base, three 

experiments were conducted to better inform educational practice. Experiment 1 

investigated whether retrieval practice could improve memory for the procedural steps 

needed to solve complex statistical problems, Experiment 2 investigated whether 

enhanced memory for the procedural steps improved problem-solving performance, and 

Experiment 3 compared learning by studying worked examples, learning by solving 

practice problems without feedback, and learning by solving practice problems with 

feedback. In every experiment, students were asked to predict how well they would 

perform on the test (i.e., they made a judgment of learning) in order to investigate the 

influence of the learning activities on metacognition. Students were also asked to 

subjectively evaluate their learning activity based on their level of interest and 

engagement. The ideal learning activity would not only improve test performance but 

would also be engaging and interesting to students. Lastly, students rated how difficult 

the learning activity was and how much mental effort they had invested into the learning 

activity. This was critical information to collect because cognitive load theory has 

claimed that problem solving is difficult for novice learners and places a cognitive burden 

on them that inhibits their learning (van Gog & Kester, 2012; van Gog et al., 2015). 

These experiments not only hold theoretical significance as they tested competing 

predictions generated from the transfer-appropriate processing framework and cognitive 
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load theory, but they also have important educational implications because they examined 

the potential limitations of retrieval-based learning for complex materials. 
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EXPERIMENT 1 

 The purpose of Experiment 1 was to demonstrate that retrieval practice can 

improve memory for the procedural steps that are needed to solve probability problems. 

In previous research, the retrieval practice condition required students to freely recall 

information about a previously studied worked example (van Gog et al., 2015; Yeo & 

Fazio, 2019). This type of processing has demonstrated an improvement in memory for 

the details included in the problem but does little to improve problem solving 

performance (Yeo & Fazio, 2019). Moreover, this retrieval practice activity appears to be 

a relatively weak form of an otherwise effective learning technique because students 

could be retrieving distracting and irrelevant information from the question prompt that 

would not benefit them on future problems. A more authentic application of retrieval 

practice would focus the mental processing that occurs during retrieval onto only the 

information that is relevant for solving problems. In Experiment 1, students were given a 

brief introduction about the Poisson probability distribution before studying or retrieving 

the procedural steps that are needed to solve these problems. After a brief delay, students 

were tested on their memory for the procedural steps. According to van Gog and Sweller 

(2015) the retrieval practice effect loses its effectiveness when learning involves complex 

materials. Therefore, they would predict a null or even negative effect for the retrieval 

practice condition when students are learning this problem-oriented procedure. Moreover, 

this experiment favors the study only condition because an immediate test was used, 

which tends to benefit massed studying (e.g., Roediger & Karpicke, 2006).  

  



26 

Method 

Subjects and Design 

Experiment 1 involved two between-subject conditions: a study only condition 

and a retrieval practice condition. The most recent meta-analysis of retrieval practice 

reported an effect size of g = 0.56 [0.51, 0.62] for same-day retention intervals (Adesope 

et al., 2017). Using this effect size, a power analysis indicated that 60 people were needed 

in each learning activity in order to achieve 85% power. One hundred and twenty Purdue 

University undergraduate students participated in exchange for course credit. 

Materials 

Students learned about the Poisson probability distribution by studying materials 

adapted from Yeo and Fazio (2019), which Lisa Fazio graciously shared with us. In their 

experiment, the Poisson probability problems were presented as word problems that were 

solved by applying a four-step solution; however, the fourth step of the procedure 

required students to identify the specific interval of interest and translate it into an 

inequality, apply and expand the equation for the Poisson probability distribution, and 

compute the probability. Due to differences in experimental design, the current 

experiment used a modified version of their materials. Namely, the last step for each 

problem was explicitly broken up into its separate components (see Figure 1). A general 

description of each step was also created to allow students to learn the procedure outside 

of the context for a specific problem (see Appendix B). These materials were ideal 

because they are unlikely to have been taught outside of college statistics courses, 

meaning students would most likely be novices learning how to solve complex, multi-

step probability problems and should therefore experience cognitive load during learning. 
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Figure 1. The worked example that all conditions studied during the beginning of the 

learning phase in every experiment. 
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Procedure 

Students completed the 30-minute experiment online at a time and location of 

their choosing. After agreeing to participate in the experiment, students were asked if 

they had ever learned about the Poisson probability distribution and rated their 

knowledge for it on a scale from 0 to 10. All students were then informed that they would 

be learning how to solve probability problems for an upcoming test. They were first 

familiarized with the Poisson probability distribution by studying the formula sheet (see 

Appendix A), which explained the Poisson distribution and its formula, for 4 minutes and 

then by studying a worked example for 4 minutes (see Figure 1 for the worked example 

that all students studied). The worked example provided a detailed explanation of how to 

solve the problems by providing a general description for each step, the meaning for each 

step in the current problem context, and the corresponding mathematical operations that 

were computed for each step.  

The remainder of the learning phase differed depending on the learning activity 

that students were randomly assigned to. Those assigned to the study only condition 

studied the procedural steps for a total of 10 minutes and 30 seconds (see Appendix B). 

Those assigned to the retrieval practice condition alternated between studying the 

procedural steps for 1 minute and 30 seconds and recalling them from memory for 2 

minutes for a total of 10 minutes and 30 seconds (i.e., SRSRSR). When recalling the 

procedural steps, students typed as many of the steps as they could recall into a textbox 

that was presented on the screen. After finishing the learning phase of the experiment, 

students predicted how well they would be able to remember the procedural steps on a 

test in a few minutes and made their ratings on a scale from 0% to 100% in increments of 
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10 (0, 10, … 90, 100) by clicking a radio button displayed on the screen. They also rated 

how engaging, difficult, and interesting their learning activity was (adapted from Blunt & 

Karpicke, 2014) on a scale from 0 to 10 in increments of 1 (0, 1, ...  9, 10). Following 

Paas (1992) mental effort was assessed on a scale of 1 to 9 in increments of 1 (1, 2, … 8, 

9). Students then played Pac-Man as a distractor task for 4 minutes before they completed 

a final 4-minute recall of the procedural steps, where they typed as many of the steps as 

they could remember into a textbox that was presented on the screen. 

Results 

The data and analysis scripts are available at garrettoday.info/projects 

Scoring 

Recall responses of the six procedural steps were scored by two independent 

raters. Each step in the procedure was scored, and raters awarded 1 point for fully correct 

responses, 0.5 points for partially correct responses, or 0 points for incorrect responses. 

The raters agreed on 90% of the responses, and the scores were averaged across raters for 

the purpose of analyses. 

Recall Performance During Learning 

Table 2 shows recall performance during the learning phase for students who 

practiced retrieval. An initial analysis indicated that some of the procedural steps were 

easier to remember than others, but performance on the procedural steps did not interact 

with recall number. The results have been collapsed across the procedural steps because 

memory for all of the procedural steps would be needed to successfully solve problems. 

Consistent with the vast literature on retrieval practice and our predictions, students’  

  

https://garrettoday.info/projects/
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memory for the procedural steps improved across recall attempts with interspersed  

restudy opportunities, F(2, 118) = 83.26, p < .001, ηp
2 = .59. 

 
 
Table 2 

Recall Performance During Learning in Experiments 1 and 2 

__________________________________________________ 

 Recall 1 Recall 2 Recall 3 
__________________________________________________ 

Experiment 1 .27 (.24) .61 (.26) .66 (.28) 

Experiment 2 .43 (.22) .66 (.21) .77 (.22) 
__________________________________________________ 

Note. Standard deviations are reported in parentheses. 
 
 
Final Recall Performance 

Figure 2 compares final recall performance between students who practiced 

retrieval during learning and those who only studied the procedural steps. An initial 

analysis indicated that some of the procedural steps were easier to remember than others, 

but performance on the procedural steps did not interact with recall number. The results 

have been collapsed across the procedural steps because memory for all of the procedural 

steps would be needed to successfully solve problems. Students who practiced retrieval to 

learn the procedural steps for solving Poisson probability problems outperformed 

students who simply studied the procedural steps with an overall benefit of 25%, d = 

0.86, [0.49, 1.23]. 

Subjective Ratings 

There was no difference in the proportion of students who had prior knowledge 

about the Poisson probability distribution in the retrieval practice condition (.20) and the  



31 

Figure 2. Proportion of the procedural steps correctly recalled on the test in Experiment 

1. Error bars represent standard errors of the mean.



32 

study only condition (.17, p = .81, Fisher’s exact test). Additionally, students’ self-

reported knowledge of the Poisson probability distribution was very low (M = 0.58 out of 

10) and did not differ between the conditions, d = 0.16 [-0.20, 0.52]. Table 3 shows 

students’ subjective ratings of mental effort, difficulty, interest, and engagement as well 

as their metacognitive predictions. Students in both conditions made similar judgments of 

learning, d = -0.01 [-0.36, 0.35]. However, students in the study only condition displayed 

significant overconfidence, predicting that they would remember 11% more of the 

material than they ultimately would on the final test. Students who had practiced retrieval 

were underconfident in their metacognitive predictions by about 14%. The subjective 

ratings for the learning activities did not differ between the conditions in terms of 

difficulty, d = 0.11 [-0.25, 0.47], interest, d = -0.06 [-0.42, 0.30], or mental effort, d = 

0.10 [-0.26, 0.46]. Interestingly, students who used retrieval practice reported more 

engagement than students who only studied the procedural steps, d = 0.42 [0.06, 0.78]. 

Discussion 

 The purpose of Experiment 1 was to examine the effectiveness of retrieval 

practice as an activity for learning complex, problem-oriented materials. According to 

van Gog and Sweller (2015) the retrieval practice effect loses its effectiveness when 

learning involves complex materials. Therefore, they would predict a null or even 

negative effect for the retrieval practice condition when students are learning this 

problem-oriented procedure. Moreover, this experiment favors the study only condition 

because an immediate test was used, which tends to benefit massed studying (e.g., 

Roediger & Karpicke, 2006). Compared to the study only condition, retrieval practice 

greatly improved retention of the procedure when learners were tested a few minutes  
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later. Learners who practiced retrieval also reported higher levels of engagement during 

learning and were less overconfident in their metacognitive predictions than those who 

only studied the procedural steps. Notably, these learning benefits did not come at a cost 

of increased mental effort or cognitive load. 
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EXPERIMENT 2 

 The results from Experiment 1 indicated that retrieval practice is effective at 

improving memory for the procedural steps that need to be followed when solving 

Poisson probability problems. At first glance, these results appear to provide evidence 

against cognitive load theory and its concept of element interactivity, which asserts that 

retrieval practice is ineffective with highly complex and related materials. However, the 

results from Experiment 1 could be interpreted as being compatible with this view if the 

procedural steps are deemed to be low in terms of complexity or element interactivity 

(i.e., each step could be learned in isolation from the other steps). Therefore, Experiment 

2 extended the results from Experiment 1 by using a final test that was intended to 

impose a greater demand on working memory — a problem solving test.  

Certainly, a problem-solving test that requires students to identify key information 

contained in the question prompt, remember and apply the procedural steps that build 

toward the solution, and perform the necessary algebraic calculations in order to compute 

the probability is a more complex and interactive assessment than verbatim memorization 

of the procedural steps. In fact, the primary goal of the worked example literature, which 

gave rise to the idea of element interactivity, has been to increase problem-solving 

performance. According to cognitive load theory and its concept of element interactivity, 

no benefit of retrieval practice is predicted for the problem-solving test. Alternatively, if 

successful problem solving requires sufficient memory for the procedural steps then 

retrieval practice should improve memory for those steps and should therefore facilitate 

problem-solving performance compared to the study only condition. This pattern of 
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results would provide additional evidence that the retrieval practice effect is alive and 

well with complex materials. 

Method 

Subjects and Design 

Experiment 2 involved two between-subject conditions, a study only condition 

and a retrieval practice condition that were both tested on their ability to solve problems. 

The lower bound (d = 0.49) of the effect size from Experiment 1 was chosen to serve as a 

conservative effect size for determining the needed sample size. Using this effect size, a 

power analysis indicated that 75 people were needed in each learning activity in order to 

achieve 85% power. One hundred and fifty Purdue University undergraduate students 

participated in exchange for course credit. 

Materials 

Experiment 2 used the same materials as Experiment 1, which were adapted and 

modified by Yeo and Fazio (2019). The primary change from Experiment 1 is that the 

final assessment was an eight-item problem-solving test (see Appendix E). Two of the 

problems on the test were isomorphic (i.e., required the same problem-solving procedure 

but had a different question prompt, setting, and values) to the worked example that 

students studied at the beginning of the learning phase. The remaining six questions were 

designed to test students’ ability to transfer their understanding to problems that required 

a subset or variation of the procedure they had learned. The problems were presented in 

the same order for all students, following the procedure from Yeo and Fazio (2019). 

Students were provided with a TI-30XS calculator because the final assessment in this 

experiment involved calculating probabilities. Consequently, instructions on how to use 
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the calculator were added to the bottom of the formula sheet, which explained the 

Poisson distribution, provided the formula for it, and was present during the test (see 

Appendix A). 

Procedure 

Experiment 2 consisted of a single, laboratory-based experimental session that 

lasted 64 minutes. Students were tested in small groups up to five people. The learning 

phase of the experiment was completed on a computer, and the test phase of the 

experiment was completed with pen and paper. After agreeing to participate in the 

experiment, students were asked if they had ever learned about the Poisson probability 

distribution before and rated their knowledge for it on a scale from 0 to 10. Students were 

then informed that they would be learning how to solve probability problems for an 

upcoming test. They were first familiarized with the Poisson probability distribution by 

studying the formula sheet (see Appendix A) for 4 minutes and then by studying a 

worked example for 4 minutes. The worked example provided a detailed explanation of 

how to solve the problems by providing a general description for each step, the meaning 

for each step in the current problem context, and the corresponding mathematical 

operations that were computed for each step (see Figure 1). 

The remainder of the learning phase differed depending on the learning activity 

that students were randomly assigned to. Those assigned to the study only condition 

continued studying the procedural steps for a total of 10 minutes and 30 seconds. Those 

assigned to the retrieval practice condition alternated between studying the procedural 

steps for 1 minute and 30 seconds and recalling them from memory for 2 minutes for a 

total of 10 minutes and 30 seconds (i.e., SRSRSR). After finishing the learning phase of 
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the experiment, students predicted how well they would do on a problem-solving test in a 

few minutes, and they made their ratings on a scale from 0% to 100% in increments of 10 

(0, 10, … 90, 100) by clicking a radio button displayed on the screen. They also rated 

how engaging, difficult, and interesting their learning activity was (adapted from Blunt & 

Karpicke, 2014) on a scale from 0 to 10 in increments of 1 (0, 1, ...  9, 10). Following 

Paas (1992) mental effort was assessed on a scale of 1 to 9 in increments of 1 (1, 2, … 8, 

9). Students then played Pac-Man as a distractor task for 4 minutes. 

Students were then handed a pen, a calculator, a formula sheet, and a test packet. 

They were informed that they would be given 5 minutes to solve each problem. One 

problem was presented on each page of the test packet. If they finished a problem early, 

they were told to double-check their work for that problem only. When the time limit for 

the current problem was reached, the experimenter instructed all students to turn to the 

next problem. The experimenter carefully monitored time and compliance with the 

instructions.  

Results 

The data and analysis scripts are available at garrettoday.info/projects 

Scoring 

Two independent raters scored the recall responses in the same manner as 

Experiment 1. Each of the six steps in the procedure were scored, and raters awarded 1 

point for fully correct responses, 0.5 points for partially correct responses, or 0 points for 

incorrect responses. The raters agreed on 95% of the responses, and the scores were 

averaged across raters for the purpose of analyses. The problem-solving test was scored 

by awarding 1 point for each correct solution. Responses that included an apparent 

https://garrettoday.info/projects/
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computation error (e.g., 10 + 33 = 45) but provided an otherwise correct response were 

awarded full credit. Twenty percent of the responses were scored by two independent 

raters. The raters agreed on 96% of the responses, discrepancies between the raters were 

resolved through discussion, and the remaining responses were scored by one rater. 

Recall Performance During Learning 

Table 2 shows recall performance during the learning phase for students who 

practiced retrieval. As with Experiment 1, An initial analysis indicated that some of the 

procedural steps were easier to remember than others but did not interact with recall 

number. Consequently, the results have been collapsed across steps to better represent 

learners’ overall understanding of the procedure. Consistent with the vast literature on 

retrieval practice and the results from Experiment 1, students’ memory for the procedural 

steps improved across retrieval attempts with interspersed restudy opportunities, F(2, 

148) = 94.52, p < .001, ηp
2= .56.

Problem-Solving Test Performance 

Figure 3 shows performance on the problem-solving test that occurred 4 minutes 

after the learning phase and was composed of two near transfer and six far transfer 

questions. The learning activities did not differ on near (d = 0.00 [-0.32, 0.32]) or far 

transfer questions (d = -0.19 [-0.51, 0.13]). Retrieval practice of the procedural steps did 

not produce a learning benefit on a problem-solving test compared to the study only 

condition. Additionally, the relationship between recall and problem-solving performance 

was rather small (r = .26, p = .03). Taken together, improved memory for the procedural 

steps via retrieval practice did not facilitate problem solving performance, suggesting that 

other types of processing are critical for solving these types of problems. 
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Figure 3. Problem-solving test performance for near and far transfer questions in 

Experiment 2. Error bars represent standard errors of the mean. 
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Subjective Ratings 

There was no difference in the proportion of students who had prior knowledge 

about the Poisson probability distribution in the retrieval practice condition (.16) and the 

study only condition (.15, p = 1.00, Fisher’s exact test). Additionally, students’ self-

reported knowledge of the Poisson probability distribution was very low (M = 0.53 out of 

10) and did not differ between the conditions, d = 0.01 [-0.31, 0.33]. Table 3 shows 

students’ subjective ratings of mental effort, difficulty, interest, and engagement as well 

as their metacognitive predictions. Students in both conditions made similar judgments of 

learning, d = 0.20 [-0.12, 0.52]. Their subjective ratings did not differ between the 

learning activity conditions in terms of difficulty (d = 0.08 [-0.24, 0.40]) or mental effort, 

(d = 0.29 [-0.04, 0.61]). However, students who engaged in retrieval practice reported 

higher levels of engagement (d = 0.85 [0.51, 1.18]) and interest (d = 0.63 [0.31, 0.96]) 

during learning than students who only studied the procedural steps. 

Discussion 

The results from Experiments 1 and 2 appear to support cognitive load theory and 

its concept of element interactivity in that a retrieval practice benefit was observed in 

Experiment 1 when the learning assessment was to recall the procedural steps and could 

be labeled as low in terms of material complexity. The retrieval practice effect then 

vanished in Experiment 2 when the learning assessment imposed a greater working 

memory demand; students had to identify key information contained in the question 

prompt, remember and apply the procedural steps that build toward the solution, and 

perform the necessary algebraic calculations in order to solve the problems. Put simply, 

retrieval practice produced a large benefit when the assessment imposed low working 
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memory demands, but this benefit disappeared when students were given a problem-

solving test that induced a greater burden on working memory. As predicted by cognitive 

load theory and its concept of element interactivity, material complexity appears to be a 

boundary condition for the retrieval practice effect when retrieval is involved as repeated 

recall of the procedural steps. Nevertheless, an alternative explanation could account for 

the same pattern of data and would generate testable predictions that would be 

inconsistent with the predictions from cognitive load theory. This alternative explanation 

draws on transfer-appropriate processing, the idea that the relationship between the type 

of processing students engage in during learning and the type of processing required 

when tested determines the memorability of information (Karpicke, 2017; Morris, 

Bransford, & Franks, 1977; Roediger, 1990). 

According to transfer-appropriate processing, for learners to achieve optimal test 

performance they need to study in such a way that they are engaging in the same mental 

processing that will be required of them when tested. The retrieval practice condition in 

Experiment 1 accomplished this by having the students engage in free recall, the exact 

mental task that would be required of them during the test. As a result, retrieval practice 

uniquely afforded test compatible processing during learning and produced superior final 

recall performance relative to the study only condition, which did not afford the 

opportunity for students to engage in test compatible processing. However, Experiment 2 

used a problem-solving test that required students to identify key information contained 

in the question prompt, remember and apply the procedural steps that build toward the 

solution, and perform the necessary algebraic calculations in order to solve the problems. 

In this experiment, the retrieval practice condition did not produce better test 
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performance compared to the study only condition, which could be due to the retrieval 

practice condition no longer affording the critical test compatible processing.  
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EXPERIMENT 3 

The problem-solving test used in Experiment 2 required students to identify key 

information contained in the question prompt, remember and apply the procedural steps 

that build toward the solution, and perform the necessary algebraic calculations in order 

to solve the problems. Yet, the retrieval practice learning activity only targeted the 

memory of the procedural steps and did not afford test compatible processing. Therefore, 

the lack of a retrieval practice effect is consistent with the transfer-appropriate processing 

account. Consequently, transfer-appropriate processing and cognitive load theory can 

account for the results of Experiments 1 and 2 but in different ways. In order to better 

evaluate the predictions from the transfer-appropriate processing account and cognitive 

load theory different learning activities were used in Experiment 3; students either 

studied worked examples or solved practice problems during the learning phase. 

According to cognitive load theory, worked examples are the optimal technique for 

learning problem-oriented materials because they alleviate cognitive load during learning, 

freeing up crucial cognitive resources that can be devoted to acquiring the necessary 

problem-solving schema (van Gog & Kester, 2012; van Gog et al., 2015; van Gog et al., 

2011). 

Alternatively, transfer-appropriate processing predicts that solving practice 

problems will result in the highest levels of test performance because it would afford the 

most test compatible processing during learning (i.e., students will have practiced 

identifying key information contained in the question prompt, remembering and applying 

the procedural steps that build toward the solution, and performing the necessary 

algebraic calculations in order to solve the problems). The caveat with this prediction is 
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that students must be engaging in test compatible processing during learning, which 

would be demonstrated by students solving some of the practice problems correctly. 

Feedback was provided to one group of students in order to enhance performance during 

the learning phase in hopes of ensuring that this group of students would engage in the 

cognitive processing that would be required on the problem-solving test.  

Method 

Subjects and Design 

Experiment 3 used three between-subject conditions: worked examples only, 

problem solving only, and problem solving with feedback. The primary comparison of 

interest is between the worked example condition and the problem solving with feedback 

condition because feedback was predicted to improve initial problem-solving success, 

increasing the probability that students would be able to engage in test compatible 

cognitive processing during learning. Two meta-analyses have estimated the effect size of 

retrieval practice with feedback to be g = 0.63, 95% CI [0.58, 0.68] and g = 0.73, 95% CI 

[0.61, 0.86] (Adesope et al., 2017; Rowland, 2014, respectively). However, a far more 

conservative effect size of d = 0.47 was chosen for determining the needed sample size 

because past research has argued that the retrieval practice effect is smaller for complex, 

problem-oriented materials (e.g., van Gog & Sweller, 2015, but see Karpicke & Aue, 

2015 for an alternative view). Note that this value is well below the lower bound of both 

meta-analyses and is the effect size from small-scale meta-analysis that focused on 

studies that had initial performance above 69.12%. Using this effect size, a power 

analysis indicated that 100 people were needed in each learning activity in order to 

achieve 90% power. Three hundred Purdue University undergraduate students 
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participated in exchange for course credit. This large sample provided far more power 

than has been present in previous research that has compared retrieval practice and 

worked examples. 

The experiment involved two experimental sessions, spaced one week apart. In 

Session 1, students learned how to solve statistical problems about the Poisson 

distribution. Students returned one week later for Session 2, which involved a final 

problem-solving test. Session 1 was completed in 30 minutes and Session 2 was 

completed in 55 minutes. 

Materials 

Experiment 3 used the same materials as the previous experiments, which were 

adapted and modified from Yeo and Fazio (2019), but the learning phase focused on 

problem solving rather than focusing on learning only the procedural steps. 

Practice problems. For the learning phase of the experiment, students 

encountered four Poisson probability problems, each requiring a six-step solution. All 

students, regardless of condition, initially studied a worked example (see Figure 1). 

Depending on the learning activity that students were randomly assigned to, the three 

other problems were either studied as a worked example (see Appendix C) or were 

presented as practice problems that needed to be solved (see Appendix D). These three 

problems were isomorphic to the initial worked example, meaning they had the same 

basic problem structure but different surface features (i.e., a different question prompt, 

setting, and values). 

Test problems. For the test phase of the experiment, students solved two near 

transfer problems that were isomorphic to those encountered during the learning phase, 
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six far transfer problems, and three questions that were repeated from the learning phase 

(i.e., Practice Problems 2, 3, and 4). The near transfer problems closely followed the 

format of the problems encountered during the learning phase. The far transfer problems 

differed from the near transfer problems by requiring a subset or variation of the 

problem-solving procedure. The problems were presented in the same order for all 

students, following the procedure from Yeo and Fazio (2019) with the modification that 

the last three questions from the learning phase were included after the eighth test 

question (see Appendix E). 

Procedure 

The learning phase of the experiment lasted 30 minutes, and students were tested 

in small groups up to five people. After agreeing to participate in the experiment, students 

were asked if they had ever learned about the Poisson probability distribution before and 

rated their knowledge for it on a scale from 0 to 10. Everyone was familiarized with the 

Poisson probability distribution by studying the formula sheet for 4 minutes (see 

Appendix A), which explained the Poisson distribution, its formula, and provided 

instructions on how to use the calculator. Students had access to the formula sheet for the 

entirety of the learning phase to ensure that they were concentrating on learning the 

procedure itself rather than simply memorizing the formula. Importantly, the formula 

sheet did not contain information on how to solve the upcoming problems.  

All students, regardless of condition, then studied the same worked example for 6 

minutes (see Figure 1). Worked examples provided a detailed explanation of how to solve 

the problems by providing a general description of each step, the meaning of each step in 

the current problem context, and the corresponding mathematical operations that were 
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computed for each step. The remainder of the learning phase differed depending on the 

learning activity that the student was randomly assigned to. Students in the worked 

example condition studied three isomorphic worked examples for 6 minutes per problem 

(E2 E3 E4). Students in the problem solving only condition attempted to solve the three 

isomorphic or near transfer problems and were given 6 minutes per problem (P2 P3 P4). 

Rather than alternating between solving a practice problem and then studying an entirely 

new worked example (e.g., van Gog et al., 2015), students in the problem solving with 

feedback condition attempted to solve three isomorphic problems but received feedback 

after 4 minutes in the form of the worked example for that particular problem, which they 

studied for 2 minutes (P2E2 P3E3 P4E4). All students saw the same problems, for the same 

amount of time, in the same order. Time was carefully tracked by the researcher, who 

collected and then handed out each practice problem or worked example. 

After finishing the learning phase of the experiment, students predicted how well 

they would do on a problem-solving test one week later, and they made their ratings on a 

scale from 0% to 100%. They also rated how engaging, difficult, and interesting their 

learning activity was (adapted from Blunt & Karpicke, 2014) on a scale from 0 to 10 in 

increments of 1 (0, 1, ...  9, 10). Following Paas (1992) mental effort was assessed on a 

scale of 1 to 9 in increments of 1 (1, 2, … 8, 9). 

When students arrived one week later for problem-solving test, they were then 

handed a pen, a calculator, a formula sheet, and a test packet. One problem was presented 

on each page of the test packet. If they finished a problem early, they were told to double-

check their work for that problem only. When the time limit for the current problem was 

reached, the experimenter instructed all students to turn to the next problem. The 
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experimenter carefully monitored time and compliance with the instructions. The test 

consisted of two near transfer, six far transfer, and three repeated questions for a total of 

11 questions. Session 2 took approximately 55 minutes to complete. 

Results 

The data and analysis scripts are available at garrettoday.info/projects 

Scoring 

All responses to the problems either during learning or at test were scored by 

awarding 1 point for each correct solution. Responses that included an apparent 

computation error (e.g., 10 + 33 = 45) but provided an otherwise correct response were 

awarded full credit. Twenty percent of the responses were scored by two independent 

raters. The raters agreed on 92% of the responses, discrepancies between the raters were 

resolved through discussion, and the remaining responses were scored by one rater. 

Problem-Solving Performance During Learning 

Table 4 reports performance on the practice problems that students in the retrieval 

practice conditions attempted to solve during the learning phase. Contrary to our 

predictions, the problem-solving condition had higher performance on the first practice 

problem (d = 0.44 [0.16, 0.72] and second practice problem (d = 0.42 [0.14, 0.70]) 

compared to the problem solving with feedback condition. However, on the last practice 

problem the two problem solving conditions performed equally, d = 0.00 [0-.28, .28]. The 

most reasonable explanation for the initial difference between the groups is that the 

problem-solving only condition had 6 minutes to solve each problem and the problem 

solving with feedback condition had only 4 minutes to solve each problem, which was 

done in order to maintain equivalent total time per problem between the conditions. 

https://garrettoday.info/projects/
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Looking across performance on the practice problems, solving problems with feedback 

produced a positive learning trajectory (an increase of .27 from Problem 2 to 4), whereas 

the problem-solving condition led to little growth over the learning phase (an increase of 

.06 from Problem 2 to 4). It is possible that if the learning phase had included more 

learning opportunities then the problem solving with feedback condition would have  

continued to improve. Future research should explore this possibility. 

Table 4 

Practice Problem Performance in Experiment 3 

________________________________________________________________________ 

Problem 2 Problem 3 Problem 4 
________________________________________________________________________ 

Problem Solving .73 (.45) .78 (.42) .79 (.41) 

Problem Solving w/ Feedback .52 (.50) .59 (.49) .79 (.41) 
________________________________________________________________________ 

Note. Standard deviations are reported in parentheses. 

Problem-Solving Test Performance 

Figure 4 displays the performance for each type of problem on the problem-

solving test that occurred one week after the learning phase. Contrary to predictions from 

cognitive load theory, the worked example benefit was absent for all types of test 

problems. Solving practice problems without feedback led to a small, non-significant 

benefit over studying worked examples for repeated (d = 0.16 [-0.12, 0.44]), near transfer 

(d = 0.13 [-0.15, 0.41]), and far transfer questions (d = 0.06 [-0.21, 0.34]). These results 

are consistent with previous studies that have found limited benefits of solving practice 

problems over studying worked examples on delayed assessments (Hanham et al., 2017;  
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Figure 4. Problem-solving test performance for repeated, near transfer, and far transfer 

questions in Experiment 3. Error bars represent standard errors of the mean. 
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Leahy et al., 2015; van Gog et al., 2015; Yeo & Fazio, 2019). Solving these complex 

probability problems with little to no guidance produced equivalent problem-solving test 

performance compared to studying worked examples. The critical comparison is between 

the problem-solving with feedback and the worked example conditions. Students that 

solved practice problems and received feedback outperformed the worked example 

condition on the test problems that were repeated from the learning phase, d = 0.40 [0.12, 

0.68], and on the near transfer problems, d = 0.34 [0.06, 0.62], but not on far transfer 

problems, d = 0.03 [-0.25, 0.31]. Put simply, problem solving without guidance led to 

slightly better test performance than studying worked examples, and this problem-solving 

benefit was enhanced when feedback was provided. 

Exploring the Relationship Between Practice and Test Problem Performance 

An exploratory analysis was conducted to examine the importance of practice 

problem performance because initial learning performance moderates the benefit from 

retrieval-based learning (Rowland, 2014). An initial correlation was computed between 

practice problem performance and overall test performance, revealing a strong, positive 

relationship (r = .50, p < .001). Further analysis examined test performance based on the 

number of practice questions students solved correctly during the learning phase. Table 5 

provides the proportion of students who solved none, one, two, or three of the practice 

questions correctly for each of the problem-solving conditions. Interestingly, 63% of 

students in the problem-solving condition answered every practice question correctly 

compared to only 32% in the problem solving with feedback condition. As previously 

stated, the problem-solving condition had more time devoted to solving problems and this 
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additional time appears to have led to higher problem-solving performance. Of particular 

interest is that many of the students in these conditions experienced repeated failure  

during the learning phase solving less than 33% of the practice problems correctly. 
 
 
Table 5 

Proportion of Students That Solved Practice Problems Correctly in Experiment 3 

________________________________________________________________________ 

 0 Correct 1 Correct 2 Correct 3 Correct 
________________________________________________________________________ 

Problem Solving .12 .09 .16 .63 

Problem Solving w/ Feedback .13 .16 .39 .32 
________________________________________________________________________ 
 
 

Figure 5 displays the average overall test performance for each problem-solving 

condition separated by the number of practice problems solved successfully, and the 

dashed line represents average test performance for the worked example condition, M = 

.62. These results should be interpreted with extreme caution because the sample has 

been divided based on initial performance, which greatly reduces power, and did not 

involve random assignment. This analysis could also be tapping into characteristics of 

individual students, such as the amount of attention or effort students put forth during the 

learning phase. Nevertheless, the relationship between initial performance and the 

worked example effect is striking. When students are solving problems without feedback 

and fail to solve any of the practice problems correctly, they have extraordinarily low test 

performance leading to a sizeable benefit for worked examples of 53%, d = 2.65 [1.95, 
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Figure 5. Problem-solving test performance in Experiment 3 based on initial problem-

solving performance. The dashed read line represents the overall test performance of the 

worked example condition (M = .62). Error bars represent standard errors of the mean. 
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3.34]. This pattern is consistent with the idea of transfer-appropriate processing as these 

students are not engaging in the mental processing during learning that will benefit them  

when tested and subsequently perform poorly on the problem-solving test. The worked 

example effect was drastically reduced (14%, d = 0.35 [-0.34, 1.03]) when students were 

able to solve one of the practice problems correctly in the absence of feedback. There was 

a slight benefit for solving problems without feedback when students solved two practice 

problems correctly (7%, d = 0.22 [-0.31, 0.74]) and an even bigger benefit in favor of 

problem solving when students solved all three practice problems correctly (17%, d = 

0.51 [0.19, 0.83]).  

Feedback was particularly beneficial for students who struggled on the practice 

problems. Compared to the problem solving only condition, failing to solve every 

practice problem and receiving feedback cut the worked example benefit in half (24%, d 

= 0.82, [0.23, 1.41]). When students solved one (9%, d = 0.31 [-0.22, 0.84]) or two (10%, 

d = 0.35 [-0.02, 0.72]) of the practice problems correctly and received feedback there was 

a small retrieval practice effect. Finally, there was a large benefit of retrieval-based 

learning over studying worked examples when students were able to solve every practice 

problem correctly and received feedback (18%, d = 0.58 [0.18, 0.99]). Although not 

definitive, this exploratory analysis provides further evidence that initial retrieval success 

is a critical component of retrieval-based learning. 

Subjective Ratings 

There were no differences in the number of students who had prior knowledge 

about the Poisson probability distribution between the conditions (p = .67, Fisher’s exact 

test). Additionally, students’ self-reported knowledge of the Poisson probability 
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distribution was very low (M = 0.57 out of 10) and did not differ between the conditions, 

F(2, 297) = 0.41, p = .66, ηp
2 = 0.03. Table 3 shows students’ subjective ratings of mental 

effort, difficulty, interest, and engagement as well as their metacognitive predictions. 

Students in the problem solving with feedback condition and problem-solving condition 

provided similar ratings for difficulty (d = 0.01 [-0.27, 0.28]), interest (d = 0.17 [-0.11, 

0.45]), engagement (d = 0.03 [-0.24, 0.31]), and mental effort (d = 0.16 [-0.12, 0.44]). 

Solving problems with feedback led to higher judgments of learning than solving 

problems without feedback (d = 0.36 [0.08, 0.64]). Worked examples led to higher 

judgments of learning than the problem solving with feedback (d = 0.28 [0.01, 0.56]) and 

the problem-solving condition (d = 0.59 [0.30, 0.87]). The problem-solving (d = 0.65 

[0.37, 0.93]) and problem solving with feedback (d = 0.69 [0.40, 0.97]) conditions were 

rated as more difficult than the worked example condition. However, these more difficult 

conditions were also rated as more engaging (problem solving: d = 0.48 [0.20, 0.76]; 

problem solving with feedback: d = 0.56 [0.27, 0.84]) and more interesting (problem 

solving: d = 0.26 [-0.02, 0.54]; problem solving with feedback: d = 0.45 [0.17, 0.74]) 

than studying worked examples. Importantly, the worked example condition reported 

lower ratings of mental effort than either the problem-solving (d = 0.27 [-0.01, 0.55]) or 

problem solving with feedback conditions (d = 0.42 [0.14, 0.70]). 

Discussion 

The purpose of Experiment 3 was to test the competing predictions from cognitive 

load theory against predictions from the transfer-appropriate processing framework by 

having students learn to solve Poisson probability problems by either studying worked 

examples or by solving practice problems. The results from the problem-solving test 
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conflict with the predictions from cognitive load theory because the worked example 

effect was not observed. In fact, the worked example condition produced the lowest 

performance for all types of test problems. The results were instead consistent with the 

predictions that were generated from the transfer-appropriate processing framework 

because students who solved practice problems with feedback achieved the highest scores 

on the delayed test, providing additional evidence that the retrieval practice effect is alive 

and well with complex materials.  

Experiment 3 also demonstrated the usefulness of worked examples as a method 

for delivering feedback. Students that studied worked examples as feedback after 

attempting to solve practice problems performed the best on repeated and near transfer 

questions. These students also reported the highest levels of engagement and interest 

during learning. Moreover, the exploratory analysis illustrated in Figure 5 suggested that 

this form of feedback was particularly beneficial for students who were struggling during 

the learning phase. These promising results regarding the benefit of worked examples as 

a way of delivering feedback are limited in that the present study did not systematically 

manipulate and compare various types of feedback. This leaves open the possibility that 

alternative types of feedback or support during learning may be more effective than 

studying worked examples. 

 



58 

GENERAL DISCUSSION 

Three experiments investigated the effectiveness of retrieval practice for learning 

complex and interrelated materials. In Experiments 1 and 2 retrieval practice required 

students to recall the procedural steps that are needed to solve Poisson probability 

problems. In Experiment 1, when the final assessment required students to recall the 

procedure, a retrieval practice effect was demonstrated. However, retrieval practice 

afforded no learning benefits in Experiment 2 when the assessment was a problem-

solving test. Put simply, retrieval practice produced a large benefit when the assessment 

imposed minimal working memory demands, but this benefit disappeared when students 

were given a problem-solving test that induced a greater burden on working memory. 

This pattern of data appears to be consistent with cognitive load theory and its concept of 

element interactivity, but the transfer-appropriate processing framework provides an 

alternative explanation.  

According to the idea of transfer-appropriate processing, optimal test performance 

depends on the compatibility between the cognitive processing that occurs during 

learning and the cognitive processing that is required by the test. Consistent with this 

idea, a pronounced retrieval practice effect was observed in Experiment 1 where there 

was high compatibility between the processing required during the retrieval practice 

condition and the recall test. This learning-test processing compatibility for the retrieval 

practice condition was eliminated in Experiment 2 because the assessment switched to a 

problem-solving test. As a result, neither learning activity in Experiment 2 uniquely 

afforded processing during learning that was compatible with the cognitive processing 

required by the test, which could explain the absence of a retrieval practice effect. 
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In order to evaluate these competing explanations, Experiment 3 pitted the 

predictions from cognitive load theory against the predictions from transfer-appropriate 

processing by having students learn to solve Poisson probability problems by studying 

worked examples or by solving practice problems. According to cognitive load theory 

and its concept of element interactivity, retrieval practice is an ineffective learning 

activity because it overburdens students limited working memory, which is already 

experiencing cognitive load due to the complexity of the materials. (van Gog et al., 

2015). Thus, cognitive load theory predicts that studying worked examples would lead to 

better test performance compared to retrieval-based learning activities. Alternatively, the 

transfer-appropriate processing account predicts that solving practice problems would 

afford the same cognitive processing that would be critical on a problem-solving test, and 

this learning-test compatibility would facilitate test performance. The caveat with this 

prediction is that students must be engaging in test compatible processing during 

learning, which would be demonstrated by students solving some of the practice 

problems correctly. If learners are unable to solve practice problems successfully then 

they would not be engaging in test compatible processing during learning and would not 

have an advantage over the worked example condition on the test.  

The results from Experiment 3 conflict with the predictions from cognitive load 

theory because studying worked examples decreased self-reported levels of mental effort 

but failed to produce a learning benefit. In fact, the worked example condition had the 

lowest test performance for all question types. The results from Experiment 3 are 

consistent with the idea of transfer-appropriate processing because the problem solving 

with feedback condition outperformed the worked example condition on repeated and 
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near transfer questions, which required a similar procedure (or identical in the case of 

repeated questions) to what students had practiced during learning. In other words, these 

questions required the same cognitive processing that students in the problem-solving 

conditions had the opportunity to engage in during learning. Far transfer questions, on the 

other hand, required students to use a subset or variation of the procedure requiring 

different mental processing than what had been practiced during learning. In this case, 

none of the learning activities uniquely afforded test compatible processing during 

learning, which could explain the equivalent performance across the learning activities 

for far transfer questions.  

Proponents of cognitive load theory could try to argue that the problem-solving 

conditions achieved relatively high success during learning, constituting expertise. Thus, 

the results could be viewed as a demonstration of the expertise reversal effect, the finding 

that studying worked examples eventually becomes redundant and ineffective when 

learners become experts (see Kalyuga, 2007 for a review). This argument is problematic 

because typical demonstrations of expertise reversal involve multi-session experiments 

where students see far more than the four questions presented in Experiment 3 (Kalyuga 

et al., 2001, Kalyuga & Sweller, 2004). Furthermore, classifying the students in 

Experiment 3 as experts seems inappropriate because they entered the study with little to 

no prior knowledge, struggled on the practice problems, and did not achieve high levels 

of test performance. Students do not need to become experts before they can experience a 

retrieval practice effect, but they do need to achieve some retrieval success during 

learning in order to benefit from retrieval-based learning. 
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The lack of a benefit from studying worked examples is even more striking as this 

learning activity was rated as the least difficult and required the least amount of mental 

effort. These lower ratings of difficulty and mental effort align with the prediction from 

cognitive load theory that worked examples create less cognitive load than solving 

practice problems (van Gog et al., 2015). This reduction in cognitive load from studying 

worked examples is said to free up limited working memory resources that are critical 

when learning complex materials (Paas & van Gog, 2006). Despite a reduction in mental 

effort for the worked example condition during learning, studying worked examples 

produced the lowest levels of test performance and highest judgments of learning. 

Studying worked examples was also rated as less engaging and less interesting compared 

to the problem-solving conditions. By studying with an unengaging and uninteresting 

learning activity that produces overconfidence, students are at risk of terminating their 

studying prematurely. In this way, studying worked examples could lead to shockingly 

ineffective study choices, resulting in even less learning than solving practice problems. 

To conclude, the claim that the retrieval practice effect is eliminated for complex 

materials is extremely harmful for teachers and students and is unsupported by both the 

extant literature and the present findings. Furthermore, the current research, including the 

small-scale, exploratory meta-analysis presented in the introduction, identified a 

limitation with the worked example literature. Namely, the worked example effect is 

typically demonstrated when compared against impoverished learning activities — 

learning by repetitive failure (e.g., van Gog & Kester, 2012). Learning by repetitive 

failure is a straw-man version of retrieval practice, and the limited benefits of throwing 

problems at unprepared students is a poor comparison condition to demonstrate the 
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efficacy of a learning activity. In the medical field, new treatments must outperform the 

current best practice in order to be recommended (Kornell et al., 2012). Education 

research needs to adopt this approach to better evaluate the effectiveness of learning 

activities before strong conclusions are drawn. Fortunately, retrieval-based learning 

activities have been consistently found to be one of the best, if not the best learning 

activity that has been discovered, and all learners should be strongly encouraged to use 

retrieval practice when studying.  
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APPENDIX A 

The Poisson Distribution 

A Bernoulli trial is one in which the outcome is either a success or a failure.  An example 
would be flipping a coin where heads is considered a "success" and tails is considered a 
"failure."  Often, over the course of a series of Bernoulli trials, the most important 
information is not which trials ended in success and which in failure, but rather, how many 
ended in success or failure.  Let X denote the number of successes in n Bernoulli trials, 
when the probability of a success on any particular trial is p.  Then X is said to have a  
Binomial distribution, X ~ B (n, p), and the probability of getting x successes in n trials is: 

𝑃𝑃(𝑋𝑋 = 𝑥𝑥) = �
𝑛𝑛
𝑥𝑥
�𝑝𝑝𝑥𝑥(1 − 𝑝𝑝)𝑛𝑛−𝑥𝑥   , 𝑥𝑥 = 0, 1, 2, … ,𝑛𝑛. 

The equation above can sometimes get quite messy when n and x get large.  For certain 
events that occur singly, independently and randomly, with the probability p of one 
event occurring within a small fixed interval of time (or space) is the same and fairly 
low at all points in time (or space), we can often use the Poisson distribution, X ~ Po(λ), 
as a replacement for the Binomial distribution to model the frequency of the occurrence  
of the events. We can replace the Binomial equation with the Poisson equation: 

𝑃𝑃(𝑋𝑋 = 𝑥𝑥) =  
𝑒𝑒−𝜆𝜆 ⋅ 𝜆𝜆𝑥𝑥

𝑥𝑥!
   , 𝑥𝑥 = 0, 1, 2, … ,𝑛𝑛,𝑎𝑎𝑎𝑎𝑎𝑎 𝜆𝜆 > 0 

where e ≈ 2.718, and where λ is the expected value (that is, the average or mean value) of 
the random variable X.  This equation is much easier to calculate for the various values of 
X than the Binomial equation. 
 
The distribution has a mean number (or expected number) of occurrences, λ, in a given 
time (or space) that is proportional to the time (or space) interval. For example, if λ is the 
mean number of phone calls received in a 1 minute interval, then the mean number of 
phone calls received in a 2 minute interval will be equal to 2λ.  
 
If X ~ Po(λ1) and Y ~ Po(λ2), where X and Y are independent, and W = X + Y (sum of  
Poisson random variables), then W is also a Poisson random variable, W ~ Po(λ1 + λ2). 

*** 

Instructions on how to use the Texas Instruments TI-30XS MultiView calculator 
 
To compute the value of a number raised to a power n:  
 
For example, to find 10-3.2, press: 1 0   ^    (–)  3 . 2  enter  
 
To compute the factorial of integer n: 
 
For example, to find 7!, press: 7   prb   3  enter  
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APPENDIX B 

The Procedural Steps that were Studied During Experiments 1 and 2 
 
 

Step 1: For the given time period, let Variable 1 (V1) equal one of the averages and 
convert it to the randomly selected period 
 
Step 2: For the given time period, let Variable 2 (V2) equal the other average and convert 
it to the randomly selected period 
 
Step 3: Add Steps 1 and 2 together to find the expected number of occurrences (λ) 
 
Step 4: Determine the boundaries of X 
 
Step 5: Expand the formula for each value contained within the boundaries of X 
 
Step 6: Calculate the probability 
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APPENDIX C 

The Worked Examples for the Learning Phase of Experiment 3 

Worked Example 1 
 
Suppose that the arrival and departure of airplanes at a domestic airport follow two 
independent Poisson distributions. In a one-hour period, it is expected on average that 
there are 4 arrivals and 3 departures. Find the probability that, in a randomly selected 
two-hour period, the airport handles 10 or more, but less than 13 arrivals and departures. 
 
Step 1: For the given time period, let Variable 1 (V1) equal one of the averages and 
convert it to the randomly selected period 

Let V1 be the number of arrivals in a two-hour period 
1 hour → 4 arrivals 
2 hours → 4 × 2 = 8 arrivals 
So, V1 ~ Po(8) 

 
Step 2: For the given time period, let Variable 2 (V2) equal the other average and 
convert it to the randomly selected period 

Let V2 be the number of departures in a two-hour period 
1 hour → 3 departures 
2 hours → 3 × 2 = 6 departures 
So, V2 ~ Po(6) 

 
Step 3: Add Steps 1 and 2 together to find the expected number of occurrences (λ) 

Let T be the total number of arrivals and departures in a two-hour period 
T ~ Po(8 + 6) 
T ~ Po(14) 
 

Step 4: Determine the boundaries of X 
10 or more and less than 13 
(10 < X < 13) 

 
Step 5: Expand the formula for each value contained within the boundaries of X 

P(10 ≤ X < 13) = P(X = 10) + P(X = 11) + P(X = 12)  
 

= 𝑒𝑒
−14∙ 1410

10!
+  𝑒𝑒

−14∙ 1411

11!
+ 𝑒𝑒−14∙ 1412

12!
 

 
Step 6: Calculate the probability 

= .249  
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Worked Example 2 
 
Suppose that the number of calls received by a hospital and a fire station follow two 
independent Poisson distributions. In a one-week period, it is expected on average that a 
hospital receives 11 calls and a fire station receives 5 calls. Find the probability that, in a 
randomly selected three-week period, the hospital and the fire station receive a total of 
more than 52, but less than 56 calls. 
 
Step 1: For the given time period, let Variable 1 (V1) equal one of the averages and 
convert it to the randomly selected period 

Let V1 be the number of calls received by the hospital in a three-week period 
1 week → 11 calls 
3 weeks → 11 × 3 = 33 calls 
So, V1 ~ Po(33) 

 
Step 2: For the given time period, let Variable 2 (V2) equal the other average and 
convert it to the randomly selected period 

Let V2 be the number of calls received by the fire station in a three-week period 
1 week → 5 calls 
3 weeks → 5 × 3 = 15 calls 
So, V2 ~ Po(15) 

 
Step 3: Add Steps 1 and 2 together to find the expected number of occurrences (λ) 

Let T be the total number of calls received by the hospital and fire station in a 
three-week period  
T ~ Po(33 + 15) 
T ~ Po(48) 

 
Step 4: Determine the boundaries of X 

More than 52 and less than 56 
(52 < X < 56) 

 
Step 5: Expand the formula for each value contained within the boundaries of X 

P(52 < X < 56) = P(X = 53) + P(X = 54) + P(X = 55) 
 

 = 𝑒𝑒
−48∙ 4853

53!
+  𝑒𝑒

−48∙ 4854

54!
+ 𝑒𝑒−48∙ 4855

55!
 

 
Step 6: Calculate the probability 

= .113 
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Worked Example 3 
 
Suppose that, in a restaurant, the number of cups and saucers being broken each day 
while washing follow two independent Poisson distributions. In one day, it is expected on 
average that there are 2 cups and 1 saucer broken. Find the probability that, in a randomly 
selected seven-day period, the total number of cups broken and saucers broken is at least 
18 but no more than 20. 

Step 1: For the given time period, let Variable 1 (V1) equal one of the averages and 
convert it to the randomly selected period 

Let V1 be the number of cups broken in a seven-day period  
1 day → 2 cups 
7 days → 2 × 7 = 14 cups 
So, V1 ~ Po(14) 

 
Step 2: For the given time period, let Variable 2 (V2) equal the other average and 
convert it to the randomly selected period 

Let V2 be the number of saucers broken in a seven-day period 
1 day → 1 saucer 
7 days → 1 × 7 = 7 saucers 
So, V2 ~ Po(7) 

 
Step 3: Add Steps 1 and 2 together to find the expected number of occurrences (λ) 

Let T be the total number of cups and saucers broken in a seven-day period  
T ~ Po(14 + 7)  
T ~ Po(21) 

 
Step 4: Determine the boundaries of X 

At least 18 but no more than 20 
(18 < X < 20) 

 
Step 5: Expand the formula for each value contained within the boundaries of X 

P(18 ≤ X ≤ 20) = P(X = 18) + P(X = 19) + P(X = 20)  
 

= 𝑒𝑒
−21∙ 2118

18!
+  𝑒𝑒

−21∙ 2119

19!
+ 𝑒𝑒−21∙ 2120

20!
 

 
Step 6: Calculate the probability 

= .244 
 
 
  



75 

Worked Example 4 
 
Suppose that the number of unsolicited text messages and phone calls received by a 
mobile line subscriber follow two independent Poisson distributions. In a one-week 
period, it is expected on average that there are 5 unsolicited text messages and 3 
unsolicited phone calls. Find the probability that, in a randomly selected four-week 
period, the subscriber receives more than 37 but at most 40 unsolicited text messages or 
phone calls. 
 
Step 1: For the given time period, let Variable 1 (V1) equal one of the averages and 
convert it to the randomly selected period 

Let V1 be the number of unsolicited text messages in a four-week period 
1 week → 5 messages 
4 weeks → 5 × 4 = 20 messages 
So, V1 ~ Po(20) 

 
Step 2: For the given time period, let Variable 2 (V2) equal the other average and 
convert it to the randomly selected period 

Let V2 be the number of unsolicited phone calls in a four-week period 
4 weeks → 3 × 4 = 12 calls 
So, V2 ~ Po(12) 

 
Step 3: Add Steps 1 and 2 together to find the expected number of occurrences (λ) 

Let T be the total number of unsolicited text messages and phone calls in a four-
week period  
T ~ Po(20 + 12)  
T ~ Po(32) 

 
Step 4: Determine the boundaries of X 

More than 37 but at most 40 
(37 < X < 40) 

 
Step 5: Expand the formula for each value contained within the boundaries of X 

P(37 < X ≤ 40) = P(X = 38) + P(X = 39) + P(X = 40)  
 

= 𝑒𝑒
−32∙ 3238

38!
+  𝑒𝑒

−32∙ 3239

39!
+ 𝑒𝑒−32∙ 3240

40!
 

 
Step 6: Calculate the probability 

= .094 
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APPENDIX D 

Practice Problems for Learning Phase of Experiment 3 
 
Practice problems have the same question prompt as the corresponding worked example 
and were presented on individual pages. 
 
 
 
Practice Problem 2 (Please label each step and show all of your work) 
 
Suppose that the number of calls received by a hospital and a fire station follow two 
independent Poisson distributions. In a one-week period, it is expected on average that a 
hospital receives 11 calls and a fire station receives 5 calls. Find the probability that, in a 
randomly selected three-week period, the hospital and the fire station receive a total of 
more than 52, but less than 56 calls. 
 
 
 
Practice Problem 3 (Please label each step and show all of your work) 
 
Suppose that, in a restaurant, the number of cups and saucers being broken each day 
while washing follow two independent Poisson distributions. In one day, it is expected on 
average that there are 2 cups and 1 saucer broken. Find the probability that, in a randomly 
selected seven-day period, the total number of cups broken and saucers broken is at least 
18 but no more than 20. 
 
 
 
Practice Problem 4 (Please label each step and show all of your work) 
 
Suppose that the number of unsolicited text messages and phone calls received by a 
mobile line subscriber follow two independent Poisson distributions. In a one-week 
period, it is expected on average that there are 5 unsolicited text messages and 3 
unsolicited phone calls. Find the probability that, in a randomly selected four-week 
period, the subscriber receives more than 37 but at most 40 unsolicited text messages or 
phone calls. 
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APPENDIX E 

Test Problems for Experiments 2 and 3 

Students were given a test packet with one question prompt presented per page. Questions 1 and 2 
are near transfer questions, questions 3-8 are far transfer questions, and questions 9-11 are 
repeated questions from the learning phase (i.e., practice problems 2, 3, 4). Only Experiment 3 
included test questions 9, 10, and 11. The answer to each problem is provided in worked example 
format for convenience, but students only saw the question prompt when tested. Below each 
question number is the type of question, which was not shown to students. 
 
Test Problem 1 (Please label each step and show all of your work)  
(Near transfer: two events and larger required interval) 

A car salesperson sells, on average, 3 new cars and 2 used cars in two weeks.  The number of new 
cars she sells is independent of the number of old cars she sells, and they each follow independent 
Poisson distributions.  Find the probability that she sells at least 5 but at most 7 cars in a 
randomly chosen four-week period. 
 
Step 1: For the given time period, let Variable 1 (V1) equal one of the averages and convert 
it to the randomly selected period 

Let V1be the number of new cars she sells in a four-week period  
2 weeks → 3 new cars 
4 weeks → 3 × 2 = 6 new cars 
So, V1 ~ Po(6) 

 
Step 2: For the given time period, let Variable 2 (V2) equal the other average and convert it 
to the randomly selected period 

Let V2 be the number of used cars she sells in a four-week period 
2 weeks → 2 used cars 
4 weeks → 2 × 2 = 4 used cars 
So, V2 ~ Po(4) 

 
Step 3: Add Steps 1 and 2 together to find the expected number of occurrences (λ) 

Let T be the total number of new and used cars she sells in a four-week period 
T ~ Po(6 + 4)  
T ~ Po(10) 

 
Step 4: Determine the boundaries of X 

at least 5 but at most 7 
(5 < X < 7) 

 
Step 5: Expand the formula for each value contained within the boundaries of X 

P(10 ≤ X < 13) = P(X = 5) + P(X = 6) + P(X = 7)  
= 𝑒𝑒

−10∙ 105

5!
+  𝑒𝑒

−10∙ 106

6!
+ 𝑒𝑒−10∙ 107

7!
 

 
Step 6: Calculate the probability 

= .191 



78 

Test Problem 2 (Please label each step and show all of your work) 
(Near transfer: two events and larger required interval) 
 
A university has two departments and each department records the number of employees absent 
through illness each day. Each employee absent for a day represents one “day of absence’. So, 
one employee absent for 2 days contributes 2 days of absence, and 6 employees absent on 1 day 
contribute 6 days of absence. Over a long period of time it is found that the average numbers 
absent for a day are 1.6 for Psychology Department and 2.2 for the Biomedical Department. 
Suppose that the absences in the two departments are independent of each other, and they each 
follow independent Poisson distributions, find the probability that, in a randomly chosen 5-day 
period, the total number of days of absence in the two departments is more than 21 but less than 
24.  
 
Step 1: For the given time period, let Variable 1 (V1) equal one of the averages and convert 
it to the randomly selected period 

Let V1 be the number of days of absence in a 5-day period for the Psychology 
Department 
1 day → 1.6 absences 
5 days → 1.6 × 5 = 8 absences 
So, V1 ~ Po(8) 

 
Step 2: For the given time period, let Variable 2 (V2) equal the other average and convert it 
to the randomly selected period 

Let V2 be the number of days of absence in a 5-day period for the Biomedical 
Department. 
1 day → 2.2 absences 
5 days → 2.2 × 5 = 11 absences 
So, V2 ~ Po(11) 

 
Step 3: Add Steps 1 and 2 together to find the expected number of occurrences (λ) 

Let T be the total number of days of absence in a 5-day period for the Psychology and 
Biomedical Departments 
T ~ Po(8 + 11)  
T ~ Po(19) 
 

Step 4: Determine the boundaries of X 
is more than 21 but less than 24 
 (21< X < 24) 

 
Step 5: Expand the formula for each value contained within the boundaries of X 

P(21< X < 24) = P(X = 22) + P(X = 23)  
 
= 𝑒𝑒

−19∙ 1922

22!
+ 𝑒𝑒

−19∙ 1923

23!
 

 
Step 6: Calculate the probability 

= .124 
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Test Problem 3 (Please label each step and show all of your work) 
(Far transfer: single event and smaller required interval) 
 
At a newly opened bistro, the number of orders for clam chowder received in a randomly chosen 
one-hour period follows a Poisson distribution with mean 4.6. Find the probability that there are 
less than 2 orders received in a randomly chosen 30-minute interval. 
 
Step 1: For the given time period, let Variable 1 (V1) equal the average and convert it to the 
randomly selected period 

Let V1 be the number of orders for clam chowder received in a 30-minute interval  
1 hour → 4.6 orders 
30 minutes → 4.6 ÷ 2 = 2.3 orders 
So, V1 ~ Po(2.3) 
 

Step 2: Determine the boundaries of X 
 less than 2 

(0 <  X < 2) 
 
Step 3: Expand the formula for each value contained within the boundaries of X 

P(0 < X < 2) = P(X = 0) + P(X = 1)  
 
= 𝑒𝑒

−2.3∙ 2.30

0!
+  𝑒𝑒

−2.3∙ 2.31

1!
 

 
Step 4: Calculate the probability 

= .331 
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Test Problem 4 (Please label each step and show all of your work) 
(Far transfer: single event and smaller required interval) 
 
The occurrences of floods per year at a particular residential area in Swiftville follow a Poisson 
distribution with mean 5. Find the probability that in a randomly chosen 3-month period, this 
particular residential area is flooded at most twice. 
 
Step 1: For the given time period, let Variable 1 (V1) equal the average and convert it to the 
randomly selected period 

Let V1 be the number of floods in a 3-month period  
12 months → 5 floods 
3 months → 5 ÷ 4 = 1.25 floods 
So, V1 ~ Po(1.25) 

 
Step 2: Determine the boundaries of X 
 at most twice 

(0 ≤  X ≤ 2) 
 
Step 3: Expand the formula for each value contained within the boundaries of X 

P(0 ≤ X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2)  
 
= 𝑒𝑒

−1.25∙ 1.250

0!
+ 𝑒𝑒

−1.25∙ 1.251

1!
+ 𝑒𝑒−1.25∙ 1.252

2!
 

 
Step 4: Calculate the probability 

= .868 
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Test Problem 5 (Please label each step and show all of your work) 
(Far transfer: two events and different given intervals) 
 
The two most common types of disciplinary offenses in a particular boys school in England is 
keeping long hair and failure to wear the school badge. Assuming that each school week consists 
of five school days and each school month consists of 20 school days, the mean number of 
disciplinary offenses recorded per day involving long hair is 1.35, and the mean number of 
disciplinary offenses recorded per school month involving failure to wear the school badge is 5. 
The number of cases for each disciplinary offense is assumed to have an independent Poisson 
distribution. Find the probability that more than 8 and less than 11 cases of disciplinary offenses 
are recorded in a randomly chosen week. 
 
Step 1: For the given time period, let Variable 1 (V1) equal one of the averages and convert 
it to the randomly selected period 

Let V1 be the number of disciplinary offences recorded for long hair per week 
1 day → 1.35 cases 
5 days → 1.35 × 5 = 6.75 cases 
So, V1 ~ Po(6.75) 

 
Step 2: For the given time period, let Variable 2 (V2) equal the other average and convert it 
to the randomly selected period 

Let V2 be the number of disciplinary offences recorded for failure to wear the school 
badge per week. 
20 days → 5 cases 
5 day → 5

20
 ×  5 = 1.25 cases 

So, V2 ~ Po(1.25) 
 
Step 3: Add Steps 1 and 2 together to find the expected number of occurrences (λ) 

Let T be the total number of cases of disciplinary offences recorded in a week 
T ~ Po(6.75 + 1.25) 
T ~ Po(8) 

 
Step 4: Determine the boundaries of X. 
 more than 8 and less than 11 

(8 < T < 11) 
 
Step 5: Expand the formula for each value contained within the boundaries of X. 

P(8 < T < 11) = P(T = 9) + P(T = 10)  
 
= 𝑒𝑒

−8∙ 89

9!
+ 𝑒𝑒−8∙ 810

10!
 

 
Step 6: Calculate the probability 

= .223 
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Test Problem 6 (Please label each step and show all of your work) 
(Far transfer: two events and different given intervals) 
 
Vehicles travelling towards the city center pass a toll booth at an average rate of 4.5 per 30-
minute interval. Vehicles travelling away from the town center pass the same toll booth at an 
average rate of 2 per 20-minute interval. Suppose that they follow independent Poisson 
distributions, find the probability that there will be more than 18 but no more than 21 vehicles 
passing the toll booth between 8 am to 9 am on a randomly chosen day.  
 
Step 1: For the given time period, let Variable 1 (V1) equal one of the averages and convert 
it to the randomly selected period 

Let V1 be the number of vehicles travelling towards the city center in 1 hour 
30 minutes → 4.5 vehicles 
1 hour → 4.5 × 2 = 9 vehicles 
So, V1 ~ Po(9) 

 
Step 2: For the given time period, let Variable 2 (V2) equal the other average and convert it 
to the randomly selected period 

Let V2 be the number of vehicles travelling away from the city center in 1 hour 
20 minutes → 2 vehicles 
1 hour → 2 × 3 = 6 vehicles 
So, V2 ~ Po(6) 

 
Step 3: Add Steps 1 and 2 together to find the expected number of occurrences (λ) 

Let T be the total number of vehicles travelling towards and away from the city center in 
1 hour 
T ~ Po(9 + 6) 
T ~ Po(15) 

 
Step 4: Determine the boundaries of X 
 more than 18 but no more than 21 

(18 < X ≤ 21) 
 
Step 5: Expand the formula for each value contained within the boundaries of X 

P(18 < X ≤ 21) = P(X = 19) + P(X = 20) + P(X = 21) 
 
= 𝑒𝑒

−15∙ 1519

19!
+ 𝑒𝑒−15∙ 1520

20!
+ 𝑒𝑒−15∙ 1521

21!
 

 
Step 6: Calculate the probability 

= .127 
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Test Problem 7 (Please label each step and show all of your work) 
(Far transfer: two events with the same mean, but with different intervals within the same 
“space”) 
 
In the production of cellphone screen protectors, scratches occur at random and independently, 
and they follow a Poisson distribution with a mean of 0.15 scratches per screen protector. In a 
quality control inspection, 100 screen protectors produced by manufacturer A and 200 screen 
protectors produced by manufacturer B were selected randomly. Find the probability that there 
are more than 51 but no more than 54 scratches in a randomly selected quality control inspection. 
 
Step 1: For the given time period, let Variable 1 (V1) equal one of the averages and convert 
it to the randomly selected period 

Let V1 be the number of scratches found on 100 screen protectors produced by 
manufacturer A in an inspection 
1 screen protectors → 0.15 scratches 
100 screen protectors → 0.15 × 100 = 15 scratches 
So, V1 ~ Po(15) 

 
Step 2: For the given time period, let Variable 2 (V2) equal the other average and convert it 
to the randomly selected period 

Let V2 be the number of scratches found on 200 screen protectors produced by 
manufacturer B in an inspection. 
1 screen protectors → 0.15 scratches 
200 screen protectors → 0.15 × 200 = 30 scratches 
So, V2~ Po(30) 

 
Step 3: Add Steps 1 and 2 together to find the expected number of occurrences (λ) 

Let T be the total number of scratches found on the 300 screen protectors produced by 
manufacturers A and B in a randomly selected inspection  
T ~ Po(15 + 30) i.e., T ~ Po(45) 

 
Step 4: Determine the boundaries of X 
 more than 51 but no more than 54 

(51 < X ≤ 54) 
 
Step 5: Expand the formula for each value contained within the boundaries of X 

P(51 < X ≤ 54) = P(X = 52) + P(X = 53) + P(X = 54) 
 
= 𝑒𝑒

−45∙ 4552

52!
+ 𝑒𝑒−45∙ 4553

53!
+ 𝑒𝑒−45∙ 4554

54!
 

 
Step 6: Calculate the probability 

= .084 
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Test Problem 8 (Please label each step and show all of your work) 
(Far transfer: two events with the same mean, but with different intervals within the same 
“space”) 
 
Two identical racing robots are being tested on a circuit. For each robot, the number of 
mechanical breakdowns follows a Poisson distribution with a mean of 2 breakdowns in 100 laps. 
Robot X does 40 laps and Robot Y does 60 laps in a test respectively. Assuming that the 
breakdowns are attended to, and the robots continue on the circuit, find the probability that there 
will be at least 1 but less than 3 breakdowns altogether during a randomly selected test. 
 
Step 1: For the given time period, let Variable 1 (V1) equal one of the averages and convert 
it to the randomly selected period 

Let V1 be the number of breakdowns for Robot X in 40 laps 
100 laps → 2 breakdowns 
40 laps→ 2

100
 ×  40 = 0.8 breakdowns 

So, V1 ~ Po(0.8) 
 
Step 2: For the given time period, let Variable 2 (V2) equal the other average and convert it 
to the randomly selected period 

Let V2 be the number of breakdowns for Robot Y in 60 laps 
100 laps → 2 breakdowns 
60 laps→ 2

100
 ×  60 = 1.2 breakdowns 

So, V2 ~ Po(1.2) 
 
Step 3: Add Steps 1 and 2 together to find the expected number of occurrences (λ) 

Let T be the total number of breakdowns altogether during a randomly selected test  
T ~ Po(0.8 + 1.2)  
T ~ Po(2) 

 
Step 4: Determine the boundaries of X 

at least 1 but less than 3 
 (1 ≤ X < 3) 
 
Step 5: Expand the formula for each value contained within the boundaries of X 

P(1 ≤ X < 3) = P(X = 1) + P(X = 2)  
 
= 𝑒𝑒

−2∙ 21

1!
+ 𝑒𝑒−2∙ 22

2!
 

 
Step 6: Calculate the probability 

= .541 
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Test Problem 9 (Please label each step and show all of your work)  
(Repeated: practice problem 2) 
 
Suppose that the number of calls received by a hospital and a fire station follow two independent 
Poisson distributions. In a one-week period, it is expected on average that a hospital receives 11 
calls and a fire station receives 5 calls. Find the probability that, in a randomly selected three-
week period, the hospital and the fire station receive a total of more than 52, but less than 56 
calls. 
 
Step 1: For the given time period, let Variable 1 (V1) equal one of the averages and convert 
it to the randomly selected period 

Let V1 be the number of calls received by the hospital in a three-week period 
1 week → 11 calls 
3 weeks → 11 × 3 = 33 calls 
So, V1 ~ Po(33) 

 
Step 2: For the given time period, let Variable 2 (V2) equal the other average and convert it 
to the randomly selected period 
Let V2 be the number of calls received by the fire station in a three-week period 

1 week → 5 calls 
3 weeks → 5 × 3 = 15 calls 
So, V2 ~ Po(15) 

 
Step 3: Add Steps 1 and 2 together to find the expected number of occurrences (λ) 

Let T be the total number of calls received by the hospital and fire station in a three-week 
period 
T ~ Po(33 + 15) 
T ~ Po(48) 

 
Step 4: Determine the boundaries of X 

More than 52 and less than 56 
(52 < X < 56) 

 
Step 5: Expand the formula for each value contained within the boundaries of X 

P(52 < X < 56) = P(X = 53) + P(X = 54) + P(X = 55) 
  
= 𝑒𝑒

−48∙ 4853

53!
+  𝑒𝑒

−48∙ 4854

54!
+ 𝑒𝑒−48∙ 4855

55!
 

 
Step 6: Calculate the probability 

= .113 
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Test Problem 10 (Please label each step and show all of your work) 
(Repeated: practice problem 3) 
 
Suppose that, in a restaurant, the number of cups and saucers being broken each day while 
washing follow two independent Poisson distributions. In one day, it is expected on average that 
there are 2 cups and 1 saucer broken. Find the probability that, in a randomly selected seven-day 
period, the total number of cups broken and saucers broken is at least 18 but no more than 20. 

Step 1: For the given time period, let Variable 1 (V1) equal one of the averages and convert 
it to the randomly selected period 

Let V1 be the number of cups broken in a seven-day period 
1 day → 2 cups 
7 days → 2 × 7 = 14 cups 
So, V1 ~ Po(14) 

 
Step 2: For the given time period, let Variable 2 (V2) equal the other average and convert it 
to the randomly selected period 

Let V2 be the number of saucers broken in a seven-day period 
1 day → 1 saucer 
7 days → 1 × 7 = 7 saucers 
So, V2 ~ Po(7) 

 
Step 3: Add Steps 1 and 2 together to find the expected number of occurrences (λ) 

Let T be the total number of cups and saucers broken in a seven-day period  
T ~ Po(14 + 7)  
T ~ Po(21) 

 
Step 4: Determine the boundaries of X 

At least 18 but no more than 20 
(18 < X < 20) 

 
Step 5: Expand the formula for each value contained within the boundaries of X 

P(18 ≤ X ≤ 20) = P(X = 18) + P(X = 19) + P(X = 20)  
 
= 𝑒𝑒

−21∙ 2118

18!
+ 𝑒𝑒

−21∙ 2119

19!
+ 𝑒𝑒−21∙ 2120

20!
 

 
Step 6: Calculate the probability 

= .244 
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Test Problem 11 (Please label each step and show all of your work) 
(Repeated: practice problem 4) 
 
Suppose that the number of unsolicited text messages and phone calls received by a mobile line 
subscriber follow two independent Poisson distributions. In a one-week period, it is expected on 
average that there are 5 unsolicited text messages and 3 unsolicited phone calls. Find the 
probability that, in a randomly selected four-week period, the subscriber receives more than 37 
but at most 40 unsolicited text messages or phone calls. 
 
Step 1: For the given time period, let Variable 1 (V1) equal one of the averages and convert 
it to the randomly selected period 

Let V1 be the number of unsolicited text messages in a four-week period  
1 week → 5 messages 
4 weeks → 5 × 4 = 20 messages 
So, V1 ~ Po(20) 

 
Step 2: For the given time period, let Variable 2 (V2) equal the other average and convert it 
to the randomly selected period 

Let V2 be the number of unsolicited phone calls in a four-week period 
4 weeks → 3 × 4 = 12 calls 
So, V2 ~ Po(12) 

 
Step 3: Add Steps 1 and 2 together to find the expected number of occurrences (λ) 

Let T be the total number of unsolicited text messages and phone calls in a four-week 
period 
T ~ Po(20 + 12) 
T ~ Po(32) 

 
Step 4: Determine the boundaries of X 

More than 37 but at most 40 
(37 < X < 40) 

 
Step 5: Expand the formula for each value contained within the boundaries of X 

P(37 < X ≤ 40) = P(X = 38) + P(X = 39) + P(X = 40)  
 
= 𝑒𝑒

−32∙ 3238

38!
+  𝑒𝑒

−32∙ 3239

39!
+ 𝑒𝑒−32∙ 3240

40!
 

 
Step 6: Calculate the probability 

= .094 
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